Что такое биохимия определение

биохимия — биохимия … Орфографический словарь-справочник

БИОХИМИЯ — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе … Современная энциклопедия

Биохимия — БИОХИМИЯ, наука о химических веществах, входящих в состав организмов, их структуре, распределении, превращениях и функциях, а также о химических процессах, лежащих в основе жизнедеятельности. Первые сведения по биохимии человек получил в процессе … Иллюстрированный энциклопедический словарь

БИОХИМИЯ — (греч.). Учение об обмене материи в живых телах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОХИМИЯ учение об обмене материи в живых существах. Полный словарь иностранных слов, вошедших в употребление в… … Словарь иностранных слов русского языка

БИОХИМИЯ — наука, изучающая состав и химические процессы, происходящие в живых организмах. Биохимия играет существенную роль в познании закономерностей потока энергии и круговорота веществ в экосистемах, их биологической продуктивности, биогеохимических… … Экологический словарь

БИОХИМИЯ — изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование… … Большой Энциклопедический словарь

БИОХИМИЯ — биологическая химия, наука о химич. составе живой материи и о химич. процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности. Б. слагается из статической Б., занимающейся преимущественно анализом химич. состава… … Биологический энциклопедический словарь

БИОХИМИЯ — БИОХИМИЯ, наука о химии живых организмов. Использует методы органической и физической химии для исследования процессов жизни. Биохимики изучают как структуру и свойства всех компонентов живой материи (ЖИРЫ, БЕЛКИ, энзимы, ГОРМОНЫ, ВИТАМИНЫ, ДНК,… … Научно-технический энциклопедический словарь

биохимия — сущ., кол во синонимов: 3 • биология (73) • нейрохимия (1) • ферментология (2) … Словарь синонимов

биохимия — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN biochemistry … Справочник технического переводчика

биохимия — биологическая химия биол., хим … Словарь сокращений и аббревиатур

Биологическая химия одна из фундаментальных теоретических наук, которая изучает состав, структуру и свойства химических соединений, формирующих живые системы, а так­же их взаимодействие и взаимопревращение в процессе метаболизма. [5]

Биохимия – изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Принципиальное значение для развития биохимии имел первый синтез природного вещества – мочевины (Ф. Велер, 1828), подорвавший представления о "жизненной силе", участвующей якобы в синтезе различных веществ организмом. Используя достижения общей, аналитической и органической химии, биохимия в XIX в. сформировалась в самостоятельную науку.

Биохимия – это наука, занимающаяся изучением различных молекул, химических реакций и процессов, протекающих в живых клетках и организмах.

Биохимия, как следует из названия (от греческого bios – жизнь), – это химия жизни, или, более строго, наука о химических основах процессов жизнедеятельности.

Первоначально вопросы биохимии изучались с разных сторон органической химией и физиологией.

Исторические предпосылки развития биохимии.

В общенаучном варианте биохимия появилась в глубокой древности (Авиценна, Гиппократ).

XVI-XVII вв. – воззрения алхимиков получили дальнейшее развитие в трудах ятрохимиков (от греч. iatros –врач). Т. Парацельс выдвинул весьма прогрессивное положение о тесной связи химии с медициной.

Витализм – учение о животной силе, в основе которого лежит тезис “живое качественно отличается от неживого”.

XVII-XVIII вв. – открытие закона сохранения материи, фотосинтеза; появились данные, доказывающие единство живого и неживого мира. Выделили мочевину, органические кислоты, спирты, холестерин из живого – окончательное опровержение витализма.

втор. пол. XVIII в. Спалланцани – исследования физиологии пищеварения – начало изучения ферментов пищеварительных соков.

1814 – К.С. Кирхгоф описал ферментативный процесс осахаривания крахмала под влиянием вытяжки из проросших семян ячменя.

1828 – Ф. Вёлер осуществил синтез мочевины в лабораторных условиях, доказав единство живой и неживой природы (материи).

1828 – год рождения биохимии.

1839 – Ю. Либих выяснил, что в состав пищи входят белки, жиры и углеводы.

1842 – первый учебник биохимии И. Зимона.

1845 – А. Кольбе – синтезировал уксусную кислоту.

1847 – учебник биохимии Ю. Либиха; учебник физиологической химии А.И. Ходнева.

сер. XIX в. найдены ферменты: амилаза слюны, пепсин желудочного сока, трипсин сока поджелудочной железы; Й. Берцелиус ввёл в химию понятие о катализе и катализаторах.

1854 – М. Бертло – синтезировал жиры.

1861 – А.М. Бутлеров – синтезировал углеводы.

1863 – в Казанском (организатор кафедры А.Я. Данилевский) и Московском (организатор – А.Д. Булыгинский) университетах преподают биохимию как науку.

1869 – открытие ДНК (Миллер).

Л. Пастер – изучение брожения.

1871 – М.М. Манассеина и Э. Бухнер (1897) доказали способность бесклеточного дрожжевого сока вызывать алкогольное брожение.

1880 – витамины (Лунин).

1892 – начала функционировать кафедра физиологической химии в Военно-медицинской (Медико-хирургической) академии в Петербурге (А.Я. Данилевский возглавлял кафедру).

XX в. – расцвет биохимии. Синтез пептидов (Фишер). Изучены углеводный, белковый и липидный обмены (основы биохимии). Открыта молекула АТФ. Выделены ферменты (энзимология). Дробление биохимии.

1931 – Энгельгардт – изучение процесса окислительного фосфорилирования (развитие биоэнергетики).

1953 – Уотсон и Крик – изучение вторичной структуры ДНК (развитие молекулярной биологии, в 70-е гг. на её основе развитие генной инженерии).

Современная биохимия как самостоятельная наука сложилась на рубеже XIX и XX веков.

к. XX – н. XXI – современный этап биохимии.

Причины выделения биохимии как самостоятельной науки:

успехи в изучении природных соединений;

потребности практики медицины;

широкое использование современных методик биохимического анализа. [1, 2, 3]

8.2. Что изучает биохимия и что является предметом исследований, направления исследований.

В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и микроорганизмов. Несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия, прежде всего в характере обмена веществ. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счёт химической энергии, освобождающейся при распаде или окислении сложных органических соединений. Растения, не использующие для своей жизнедеятельности вещества органической природы, называются аутотрофными организмами, животные же являются гетеротрофными организмами. Среди микроорганизмов встречаются как аутотрофный, так и гетеротрофный типы обмена веществ. Кроме того, микроорганизмы характеризуются наличием химических веществ и реакций, не встречающихся у животных и растений. [2]

Биохимия занимается изучением химических реакций, протекающих в микроорганизмах, растениях, насекомых, рыбах, птицах, низших и высших млекопитающих, и в частности человека. Для студентов, изучающих биомедицинские науки, особый интерес представляют два последних раздела.

Главные направления развития исследований в области биологической химии (горизонты биохимии) на ближайшую и отдалённую перспективу.

Дифференцировка клеток высших организмов (эукариот).

Организация и механизм функционирования генома.

Регуляция действия ферментов и теория энзиматического катализа.

Процессы узнавания на молекулярном уровне.

Молекулярные основы соматических и наследственных заболеваний человека.

Молекулярные основы злокачественного роста.

Молекулярные основы иммунитета.

Молекулярные механизмы памяти.

Биологические мембраны и биоэнергетика.

Основное назначение биохимии сводится к тому, чтобы решать на молекулярном уровне задачи фундаментальные, общебиологические, включая проблему зависимости человека от экосистемы, которую необходимо не только понять, но и защищать и научиться разумно ею пользоваться. [2]

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) — наука о химическом составе живых клеток и организмов, а также о лежащих в основе их жизнедеятельности химических процессах. Термин «биохимия» эпизодически употреблялся с середины XIX века, в классическом смысле он был предложен и введён в научную среду в 1903 году немецким химиком Карлом Нейбергом [1] .

Биохимия — сравнительно молодая наука, которая находится на стыке биологии и химии [2] .

Содержание

История развития [ править | править код ]

Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения. Древние мыслители рассуждали о том, какую роль играют воздух и пища в жизнеобеспечении живых существ, о том что вызывает процесс брожения [3] .

В XVII веке ван Гельмонт ввёл в обиход термин фермент для обозначения химического реагента участвующего в процессе пищеварения [5] .

XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода [6] .

Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был английский химик и врач Уильям Праут [7] . В 1828 году немецкий химик Ф. Вёлер синтезировал мочевину: сначала — из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году — из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма. Работы Вёлера нанесли первый удар по теориям представителей школы виталистов, предполагавших присутствие во всех органических соединениях некой «жизненной силы» [6] . Последующими мощными толчками в этом направлении химии явились лабораторные синтезы липидов (в 1854 году — П. Бертло, Франция) и углеводов из формальдегида (1861 — А. М. Бутлеров, Россия). Бутлеровым была также разработана теория строения органических соединений [8] .

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический [9] . На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок [10] .

Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна, Михаэлиса, Ментена и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен [11] .

В 1928 г. Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 году американский биолог Дж. Уотсон и английский физик Ф. Крик опираясь на работы М. Уилкинса и Р. Франклин описали структуру ДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии [12] .

В 1958 Джордж Бидл и Эдуард Тейтем получили Нобелевскую премию за работу проведённую на грибах, выводом которой стала гипотеза «один ген — один фермент» [13] . В 1988 Колин Питчфорк стал первым человеком, осуждённым за убийство на основе доказательств, полученных в результате ДНК-дактилоскопии доказательств, и первым преступником, пойманным в результате массового применения процедуры дактилоскопии [14] . Из последних вех в развитии биохимии следует отметить получение Эндрю Файером и Крейгом Мелло Нобелевской премии по физиологии и медицине за «открытие РНК-интерференции — эффекта гашения активности определённых генов» [15] [16] .

Смежные дисциплины [ править | править код ]

Возникнув как наука о химии жизни в конце XIX века [2] , чему предшествовало бурное развитие органической химии, биохимия отличается от органической химии тем, что исследует только те вещества и химические реакции, которые имеют место в живых организмах, прежде всего в живой клетке. Согласно этому определению, биохимия охватывает также многие области клеточной биологии и включает в себя молекулярную биологию [17] . После выделения последней в особую дисциплину, размежевание между биохимией и молекулярной биологией в основном сформировалось как методологическое и по предмету исследования. Молекулярные биологи преимущественно работают с нуклеиновыми кислотами, изучая их структуру и функции, в то время как биохимики сосредоточились на белках, в особенности на ферментах, катализирующих биохимические реакции. В последние годы термины «биохимия» и «молекулярная биология» часто используются как синонимы [9] .

Разделы биохимии [ править | править код ]

  • Статическая биохимия (Биоорганическая химия) — наука о химическом составе организмов и структур составляющих их молекул (белков, аминокислот, нуклеиновых кислот, нуклеотидов, углеводов и их производных, липидов, витаминов, гормонов). Ее основные объекты — биополимеры, превращения которых составляют химическую сущность биологических процессов, и биорегуляторы, которые химически регулируют обмен веществ.
  • Биохимия аминокислот — наука о химическом составе аминокислот [18] .
  • Биохимия белков — наука о химическом составе белков [19] .
  • Биохимия ферментов — наука о химическом составе ферментов [20] .
  • Биохимия углеводов — наука о химическом составе углеводов [21] .
  • Биохимия нуклеиновых кислот — наука о химическом составе нуклеиновых кислот [22][23] .
  • Биохимия нуклеотидов — наука о химическом составе нуклеотидов [24][25] .
  • Биохимия липидов — наука о действии липидов, их биологических эффектах, биохимических нарушениях при недостатке или избытке в организме [26] .
  • Биохимия витаминов — наука о действии витаминов, их биологических эффектах, биохимических нарушениях при недостатке или избытке в организме [27][28] .
  • Биохимия гормонов — наука о действии гормонов, их биологических эффектах, биохимических нарушениях при недостатке или избытке в организме [29][30] .
  • Динамическая биохимия — изучает химические реакции, представляющие обмен веществ (метаболизм), а именно пути превращения молекул и механизмы происходящих между ними реакций [31][32] .
    • Молекулярная биология — наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела.
    • Биоэнергетика — раздел динамической биохимии, который изучает закономерности образования, аккумуляции и потребления энергии в биологических системах.
    • Функциональная биохимия — раздел биохимии, изучающий химические превращения, лежащие в основе функций органов, тканей и организма в целом [33] .
      • Биохимия микроорганизмов (Биохимия бактерий) — наука о составе и превращениях веществ в микроорганизмах [34] .
      • Биохимия растений — наука о молекулярных процессах, происходящие в растительном организме [35][36] .
      • Биохимия животных — наука о молекулярных процессах, протекающих в клетках живых организмов [37] .
      • Биохимия человека — это раздел биохимии, который изучает закономерности обмена веществ в человеческом организме [38] .
        • Биохимия крови — наука о закономерностях обмена веществ в крови человека [39][40] .
        • Биохимия тканей — наука о закономерностях обмена веществ в тканях человека [41] .
        • Биохимия органов — наука о закономерностях обмена веществ в органах человека.
        • Медицинская биохимия — это раздел биохимии, который изучает закономерности обмена веществ в человеческом организме при заболеваниях [42] .
        • Биохимия мышечной деятельности — это раздел биохимии, который изучает закономерности обмена веществ в человеческом организме при мышечной деятельности [43][44][45] .
          • Биохимия спорта — наука, выявляющая закономерности обмена веществ в человеческом организме при предельной по объёму и/или интенсивности мышечной деятельности [46][47][48] .
          • Методы изучения [ править | править код ]

            В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в XX веке; наиболее распространенными являются хроматография, изобретённая М. С. Цветом в 1903 г. [49] , центрифугирование (Т. Сведберг, 1923 г., Нобелевская премия по химии 1926 г.) и электрофорез (А. Тизелиус, 1937 г., Нобелевская премия по химии 1948 г.) [50] [51] .

            С конца XX в. в биохимии всё шире применяются методы молекулярной и клеточной биологии, в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах (см. генная инженерия, биотехнология). Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов, сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Оказалось, что традиционный химический анализ и очистка ферментов из биомассы позволяют получить лишь те белки, которые в живом веществе присутствуют в сравнительно большом количестве. Не случайно основная масса ферментов была открыта биохимиками в середине XX века и к концу столетия распространилось убеждение, что все ферменты уже открыты. Данные геномики опровергли эти представления, но дальнейшее развитие биохимии требовало изменения методологии. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования, часто недоступный традиционными методами. В результате возник новый подход к планированию биохимического исследования, который получил название обратная генетика или функциональная геномика [52] . В последние десятилетия большое развитие произошло в области компьютерного моделирования. Эта методика позволяет исследовать свойства биомолекул там, где невозможно (или очень затруднительно) провести прямой эксперимент. Методика основана на компьютерных программах, которые позволяют визуализировать структуру биомолекул, задать их предполагаемые свойства и наблюдать результирующие интеракции между молекулами, такие например как энзим — субстрат, энзим — коэнзим, энзим — ингибитор [51] .

            Необходимые химические элементы [ править | править код ]

            Из 90 химических элементов, встречающихся в естественном состоянии в природе, для поддержания жизни необходимо чуть больше четверти. Большинство редких элементов не являются необходимыми для поддержания жизни (исключениями являются селен и иод). Большинством живых организмов не используются также два распространённых элемента, алюминий и титан. Списки необходимых для живых организмов элементов различаются на уровне высших таксонов. Всем животным необходим натрий, а некоторые растения обходятся без него. Растениям необходим бор и кремний, а животным — нет (или же необходим в ультрамикроскопических количествах). Всего шесть элементов (так называемые макронутриенты, или органогенные элементы) составляют до 99% от массы человеческого организма. Это углерод, водород, азот, кислород, кальций и фосфор. Кроме этих шести основных элементов, человеку необходимы малые или микроскопические количества ещё 19 элементов: натрий, хлор, калий, магний, сера, железо, фтор, цинк, кремний, медь, иод, бор, селен, никель, хром, марганец, молибден, кобальт [53] и, как показано в 2014 году, бром [54] .

            Биомолекулы [ править | править код ]

            Четыре основных типа молекул, исследованием которых занимается биохимия, – это углеводы, липиды, белки и нуклеиновые кислоты, а также их гибриды, протеогликаны, гликопротеины, липопротеины и т. п. Многие биомолекулы являются полимерами (макромолекулами), строительными «блоками» которых являются более простые биомолекулы. Например, полисахариды состоят из простых сахаров, белки из аминокислот. Биологические полимеры часто составляют комплексы, строение которых диктуется их биологической функцией [55] . В иерархии химической сложности живых систем макромолекулы стоят выше химических элементов, функциональных групп и простых биомолекул, а на следующих ступенях этой иерархии — метаболические пути, клетка, многоклеточные организмы и экосистемы [56] .

            Углеводы [ править | править код ]

            Углеводы состоят из мономеров, называемых моносахариды, как например глюкоза (C6H12O6), фруктоза (C6H12O6) [57] , и дезоксирибоза (C5H10O4). Во время синтеза молекулы дисахарида из двух молекул моносахаридов образуется молекула воды. Полисахариды служат для аккумуляции энергии (крахмал у растений, гликоген у животных) и как структурообразующие молекулы (например основным компонентом клеточных стенок растений является полисахарид целлюлоза, а хитин является структурным полисахаридом низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных) [58] .

            Липиды [ править | править код ]

            Белки [ править | править код ]

            Нуклеиновые кислоты [ править | править код ]

            Нуклеиновая кислота — это комплекс макромолекул, состоящий из полинуклеотидных цепочек. Основная функция нуклеиновых кислот это хранение и кодирование генетической информации. Нуклеиновая кислота синтезируется из макроэргических мононуклеозидтрифосфатов (АТФ, ГТФ, ТТФ, ЦТФ, УТФ), один из которых аденозинтрифосфат (АТФ), является к тому же основной энергоёмкой молекулой всех живых организмов. Самыми распространёнными нуклеиновыми кислотами являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеиновые кислоты можно обнаружить во всех живых клетках от архей до эукариотов, а также в вирусах [62] .

            Название «нуклеиновые кислоты» было дано этой группе биополимеров из-за их основного местонахождения — в клеточном ядре. Мономеры этих молекул называются нуклеотиды. Нуклеотиды состоят из трёх компонентов: азотистого основания (пурина или пиримидина), моносахарида типа пентоза и фосфатной группы. ДНК и РНК различаются между собой типом пентозы (в ДНК это 2-дезоксирибоза, а в РНК это рибоза), а также возможным составом азотистых оснований (в то время как аденин, гуанин и цитозин присутствуют как в ДНК так и в РНК, тимин присутствует исключительно в ДНК, а урацил — исключительно в РНК) [63] .

            Добавить комментарий

            Ваш e-mail не будет опубликован. Обязательные поля помечены *

            Adblock detector